Hi ImFusion team,
I used the following code to do spatial calibration:
sweeps=[sweep1,sweep2] parameters=imfusion.algorithmProperties('Ultrasound;Cone Calibration', sweeps) parameters.params() parameters['modelPath']="./model/cones.yaml" imfusion.executeAlgorithm('Ultrasound;Cone Calibration', sweeps,parameters)
How should I interpret the result? How could I get the Calibration Matrix
and calibration error
? In C++
, I could use UltrasoundConeCalibrationAlgorithm::EstimatedCalibration
, but I could not found corresponding method in Python.
Example algorithm output:
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 52.7048 51.0477
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 52.7048 51.0477
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 19.2437 19.0725
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 19.2437 19.0725
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 19.2437 21.6618
[UltrasoundConeCalibrationAlgorithm] Matched cones with heights: 19.2437 21.6618
[UltrasoundConeCalibrationAlgorithm] Got 37 matches
[UltrasoundConeCalibrationAlgorithm] Got 37 matches
[UltrasoundConeCalibrationAlgorithm] Ransac took 767.571 ms
[UltrasoundConeCalibrationAlgorithm] Ransac took 767.571 ms
[UltrasoundConeCalibrationAlgorithm] Refining using image content
[UltrasoundConeCalibrationAlgorithm] Refining using image content
0 0 0 0 0 0 0 → 0.176383
0 0 0 0 0 0 0 → 0.176383
1 0 0 0 0 0 0 → 0.174917
1 0 0 0 0 0 0 → 0.174917
0 1 0 0 0 0 0 → 0.17553
0 1 0 0 0 0 0 → 0.17553
0 0 1 0 0 0 0 → 0.173214
0 0 1 0 0 0 0 → 0.173214
0 0 0 1 0 0 0 → 0.168651
0 0 0 1 0 0 0 → 0.168651
0 0 0 0 1 0 0 → 0.164981
0 0 0 0 1 0 0 → 0.164981
0 0 0 0 0 1 0 → 0.160965
0 0 0 0 0 1 0 → 0.160965
0 0 0 0 0 0 1 → 0.176383
0 0 0 0 0 0 1 → 0.176383
-1 0 0 0 0 0 0 → 0.175846
-1 0 0 0 0 0 0 → 0.175846
0 -1 0 0 0 0 0 → 0.175561
0 -1 0 0 0 0 0 → 0.175561
0 0 -1 0 0 0 0 → 0.176275
0 0 -1 0 0 0 0 → 0.176275
0 0 0 -1 0 0 0 → 0.16587
0 0 0 -1 0 0 0 → 0.16587
0 0 0 0 -1 0 0 → 0.164626
0 0 0 0 -1 0 0 → 0.164626
0 0 0 0 0 -1 0 → 0.174846
0 0 0 0 0 -1 0 → 0.174846
0 0 0 0 0 0 -1 → 0.176261
0 0 0 0 0 0 -1 → 0.176261
-0.16611 -0.00575179 -0.482038 0.0749996 0.0115297 -0.409379 0.02594 → 0.175183
-0.16611 -0.00575179 -0.482038 0.0749996 0.0115297 -0.409379 0.02594 → 0.175183
-0.106594 -0.00356937 0.249695 0.0766676 0.0072235 -0.412404 0.0164444 → 0.174865
-0.106594 -0.00356937 0.249695 0.0766676 0.0072235 -0.412404 0.0164444 → 0.174865
-0.126295 -0.00411429 -0.178986 0.0707732 0.009278 -0.094801 0.0203593 → 0.175333
-0.126295 -0.00411429 -0.178986 0.0707732 0.009278 -0.094801 0.0203593 → 0.175333
-0.0140629 -0.000465861 0.0940426 0.0286433 0.0032828 -0.011099 0.0018992 → 0.176171
-0.0140629 -0.000465861 0.0940426 0.0286433 0.0032828 -0.011099 0.0018992 → 0.176171
0.0456693 -7.88481e-05 -0.00820917 0.00703911 0.000900647 -0.0172182 0.000307769 → 0.176473
0.0456693 -7.88481e-05 -0.00820917 0.00703911 0.000900647 -0.0172182 0.000307769 → 0.176473
0.0740375 -0.000255488 -0.0407238 0.0224386 0.00257671 0.00272174 0.00098548 → 0.176633
50 evaluations in 11.856 seconds, success
50 evaluations in 11.856 seconds, success
-0.0865414 0.0318517 -0.0240927 0.0262888 -0.0516507 -0.0262292 0.966277 → 0.176921 (0.176689)-0.0865414 0.0318517 -0.0240927 0.0262888 -0.0516507 -0.0262292 0.966277 → 0.176921 (0.176689)
Process finished with exit code 0
Could you please provide some help? Thanks in advance.